41 ## Soil fertility: Plant nutrition vis-à-vis fruit yield and quality of stone fruits Tomo Milošević^{a,*}, Nebojša Milošević^b ^aDepartment of Fruit Growing and Viticulture, Faculty of Agronomy, University of Kragujevac, Čačak, Republic of Serbia ^bDepartment of Pomology and Fruit Breeding, Fruit Research Institute, Čačak, Republic of Serbia *Corresponding author. E-mail: tomomilosevic@kg.ac.rs | OUTLINE | | | | |---|--------------------------|--|-----------------------------------| | 1 Introduction | 583 | 6.2 Source of nutrients and their availability | 591 | | 2 Distribution, production, and importance of stone fruits 2.1 Global distribution 2.2 Production statistics | 584 584 584 | 7 Stone fruit fertilization to improve yield and fruit quality 7.1 Fertilizers used in stone fruit production 7.2 Factors influencing stone fruit tree | 592 592 | | 3 Short overview about importance of stone fruits4 Soil fertility | 587
587 | fertilization 7.3 Determination of adequate nutrient requirement of stone fruits | 593594 | | 5 Fertilization of stone fruit frees5.1 General overview5.2 Response of stone fruit trees to fertilization | 588 588 589 | 7.4 Improving stone fruits productivity and fruit quality using fertilizers8 Conclusions and future research | 598
602 | | 5.3 Role of individual elements in stone fruit trees6 Relationship of soil conditions: Nutrients6.1 Soil conditions | 589
590
590 | Acknowledgments References Further reading | 602
602
606 | | | | J T | | ## 1 Introduction Agriculture started in multiple locations in the world some 10,000 years ago. These locations (where crop domestications took place) are distributed in some 10 areas generally between 30-degree northern latitude and southern latitude. They tend to occur in areas with higher levels of biodiversity. Although wild ancestors tend to be much more widely distributed than domesticated crops (Smartt and Simmonds, 1995), many crops originate from distinct geographic regions, which have been called Vavilov centers (Vavilov, 1926, 1951; Meyer et al., 2012). So, crop domestication has been considered as one of the key developments that enabled the rise of major civilizations (Gepts, 2014). Data on the timing of the domestication of fruit crops are different, as new discoveries arise. Generally, the origins of fruit culture occurred in the Fertile Crescent in the late Neolithic and Bronze Age, about 8000 years ago, a period known as the second Neolithic Revolution that involved the change from villages to urban communities (Janick, 2011). For example, in the archeological excavations of lake dwelling in Bosnia (former SFR Yugoslavia) from the late Bronze Age, stones of black thorn (sloe) and sweet cherry were found (Mišić, 2006).